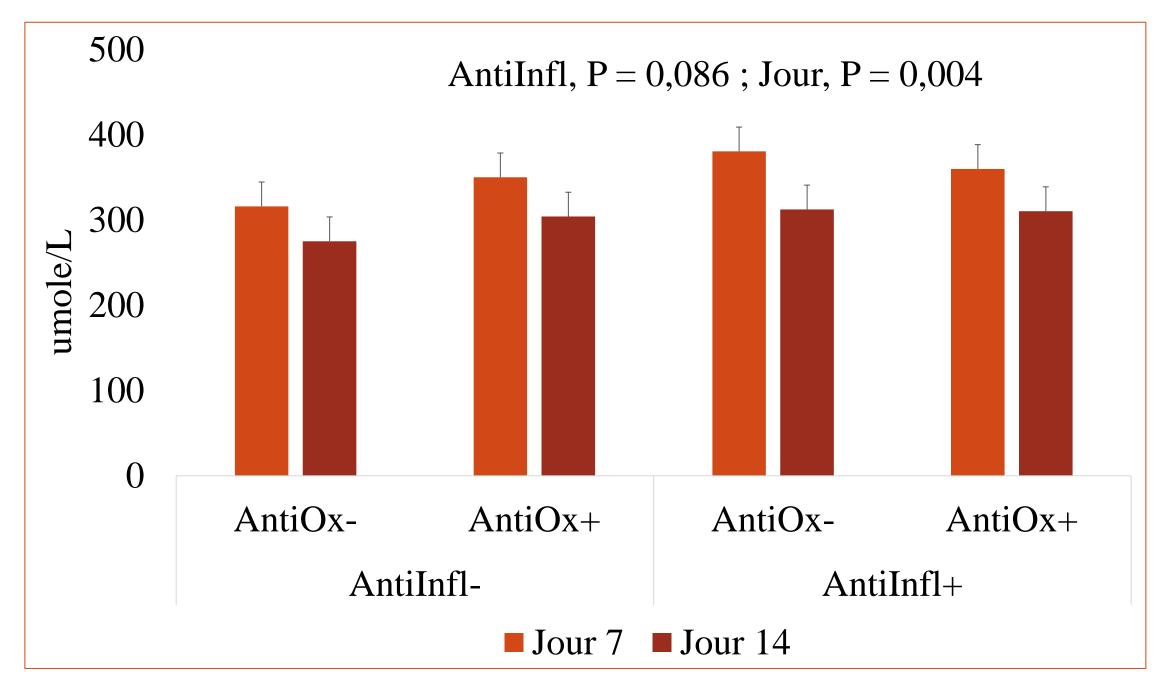
Supplémentation en composés antioxydants et anti-inflammatoires et effets sur la croissance et les statuts antioxydant et inflammatoire des porcelets sevrés



Eya Selmi, Antony T. Vincent, Marie-Pierre Létourneau-Montminy, Luca Lo Verso, Frédéric Guay Département des sciences animales, Université Laval, 2425 rue de l'Agriculture, G1V 0A6, Québec (QC), Canada

Introduction

- Le sevrage du porcelet induit un stress physiologique et psychologique important conduisant à un ralentissement de la croissance et à l'apparition des pathologies digestives.
- Ce stress provoque également une hausse du stress oxydatif associée à une surproduction de radicaux libres.
- Ce stress oxydatif précède une réponse inflammatoire, principalement dans la muqueuse intestinale.
- Ce dérèglement de l'inflammation peut nuire au développement du système immunitaire du porcelet.

Résultats

Pouvoir antioxydant (basé sur la réduction du fer ferrique) en fonction des différents traitements alimentaires

Aucun effet n'a été noté pour les marqueurs du statut inflammatoire ainsi que pour la concentration sanguine en MDA

Objectif

Évaluer l'effet de l'ajout de suppléments alimentaires ayant des effets antioxydants et anti-inflammatoires dans l'alimentation des porcelets sevrés afin d'améliorer leur croissance et leurs statuts antioxydant et inflammatoire.

Matériels et Méthodes

- ➤ Au sevrage (21 jours), 100 porcelets ont été répartis en 20 enclos distribués selon quatre traitements distribués des jours 1 à 14 après le sevrage:
 - Témoin (TEM, 125 mg/kg d'oxyde de zinc, sans antibiotique)
 - AntiOx (125 mg/kg, polyphénols, BoréOX)
 - AntiInfl (50 mg/kg, oléorésines et épices, CAPS C2PG)
 - AntiOx + AntiInfl
- Des jours 14 à 42, alimentation identique pour tous les porcelets.
- Le poids des porcelets a été mesuré aux jours 1,14, 28 et 42.
- ➤ Marqueurs des statuts inflammatoire et antioxydant mesurés aux jours 7 et 14:
 - Fèces: Néoptérine, Calprotectine
 - Sang: Malonaldéhyde (MDA), Capacité Ferrique Réductrice du Plasma (FRAP)

Performances de croissance des porcelets en fonction des différents traitements alimentaires

		AntiOx	AntiInfl	AntiOx +AntInfl	Ert	Valeur P ¹	
	TEM					AntiOx	AntiInfl
Phase 1							
Poids initial, kg	7,01	6,88	6,71	7,01	0,705	0,473	0,473
GMQ, g/j	218	211	232	233	17,3	0,836	0,287
CJ, g/j	288	302	288	298	11,3	0,254	0,824
IC	1,35	1,49	1,25	1,33	0,109	0,319	0,245
Poids J14, kg	9,73	9,62	9,93	9,94	0,242	0,836	0,287
Phase 2							
GMQ, g/j	599	609	626	621	23,5	0,875	0,205
$CJ, g/j^1$	753	752	799	778	13,2	0,403	0,015
IC	1,26	1,24	1,28	1,26	0,028	0,404	0,495
Poids J28, kg	18,1	18,2	18,7	18,6	0,31	0,914	0,101
Phase 3							
$GMQ, g/j^2$	793	829	838	862	25,2	0,157	0,063
$CJ, kg/j^3$	1,22	1,25	1,26	1,32	0,023	0,039	0,010
IC	1,54	1,51	1,50	1,54	0,040	0,939	0,892
Poids J42, kg ⁴	27,6	28,1	28,8	29,0	0,36	0,381	0,011
Période global J1 à 3	J42						
$GMQ, g/j^5$	524	535	547	557	9,9	0,255	0,027
$CJ, g/j^6$	731	743	750	773	9,3	0,082	0,016
IC	1,40	1,39	1,37	1,39	0,022	0,914	0,637

¹Aucune interaction AntiOx × AntiInfl n'a été observée

Conclusion

- Le supplément aux propriétés anti-inflammatoires a haussé le poids des porcelets suggérant une meilleure adaptation des porcelets à la suite de la période critique du sevrage menant à une meilleure prise alimentaire et une augmentation de la croissance.
- > Ce supplément tendait aussi à améliorer le statut antioxydant mais n'a eu aucun effet sur les marqueurs inflammatoires mesurées dans cette étude.

Littérature

- Campbell J. M., Crenshaw J. D., Polo J., 2013. The biological stress of early weaned piglets. J. Anim. Sci. Biotechnol., 4, 19.
- Hao Y., Xing M., Gu, X. 2021. Research progress on oxidative stress and its nutritional regulation strategies in pigs. Animals, 11, 1384.
- Lalles J. P., Montoya, C. A. 2021. Dietary alternatives to in-feed antibiotics, gut barrier function and inflammation in piglets post-weaning: Where are we now? Anim. Feed Sci. Technol. 274, 114836.

