

Saint-Malo - 6 & 7 Février 2024

Effet du butyrate de calcium, des tanins et de leur combinaison sur les performances zootechniques, la barrière intestinale et le microbiote des porcelets sevrés


Charline RICHARD-DAZEUR (1), Pauline M. ANTON (1), Nelly BADALATO (2), Marine DE KONINCK (3), Marie-Hélène DEGRAVE (4), Nicolas BARBEZIER (1), Joris MICHIELS (5)

(1) Transformations et Agroressouces, ULR 7519, UniLaSalle – Université d'Artois, Beauvais, France ; (2) GenoScreen, 1 rue du Pr Calmette, 59000 Lille, France ; (3) Sanluc International nv, Langerbruggekaai 1, 9000 Gent, Belgique ; (4) Algofit, 17 chemin du Christ, 59910 Bondues, France; (5) Ghent University, Department of Animal Sciences and Aquatic Ecology, Coupure Links 653, 9000 Gent, Belgique. Contact: pauline.m-anton@unilasalle.fr

INTRODUCTION

- Le sevrage en élevage porcin = période critique pour les porcelets (immaturité de la sphère intestinale).
 - 🖈 Baisse de performances zootechniques et atteintes durables de la santé chez ces animaux si prise alimentaire non parfaitement maîtrisée.
- •Parmi les alternatives aux antibiotiques :
 - oButyrate de calcium, source d'énergie pour les cellules intestinales, promoteur de la croissance de certains microorganismes et du contrôle de pathogènes (E.coli, C.perfringens...) (Abd El-Wahab et al., 2019) + soutien à la production de peptides antimicrobiens et à la sécrétion de mucines => contribution à la limitation de la réponse inflammatoire.
 - oTanins de châtaignier également utilisés pour contribuer à renforcer la réponse antioxydante des animaux (Marín et al., 2015).

Objectif: Evaluer l'efficacité de cette combinaison sur les performances de croissance et la santé intestinale des porcelets en post-sevrage

RÉSULTATS

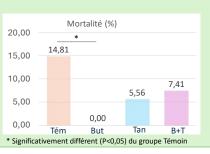
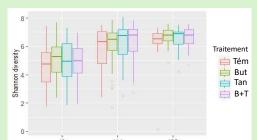
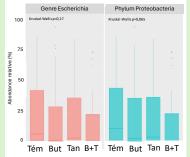
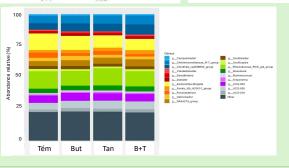

Performances zootechniques

Tableau 1 - Effets du régime sur les performances zootechniques et la santé digestive des animaux sur 35 jours


Paramètre	TEM	But	Tan	B+T	ESM	P (B+T)
CMJ, g/j	423	488	465	461	22	0,1
GMQ, g/j	310 ^b	367ª	355a	345 ^{ab}	16	0,05
1/IC, g/g	0,58 ^c	0,68a	0,65ab	0,62ab	0,03	0,02
CMJ _{H2O} , I/j	3,6	3,5	3,0	3,5	0,4	0,45
CMJ _{H20} /CMJ, ml/g	8,7	7,2	6,6	7,7	0,8	0,18
Diarrhées, %	10,7	7,5	10,6	11,3	2	0,38
Poids final, kg	17,9 ^b	19,9ª	19,5ab	19,1 ^{ab}	0,5	0,04


¹Pour une ligne donnée, les lettres différentes indiquent des différences significatives dans les interactions avec P < 0,05


Santé Digestive

Microbiote intestinal

- >Amélioration du GMQ en présence du butyrate et des tanins, du poids final et de l'indice de consommation en présence du butyrate de calcium.
- >Aucune modification des gènes codant pour les protéines des jonctions serrées, pour les TLR ou pour les protéines de la réaction inflammatoire.
- > Augmentation de la diversité des espèces bactériennes 14 et 32 jours après le sevrage mais aucune différence de la diversité entre les groupes.
- Diminution non significative de la présence des protéobactéries, principalement représentées par le genre Escherichia, responsable des diarrhées
- => Réel intérêt de l'utilisation du butyrate de calcium en post-sevrage chez le porcelet. Intérêt de l'utilisation des tanins de châtaignier plus limitée. Utilisation du mix Tanins/Butyrate de calcium favorable à la croissance et la santé des animaux sans amélioration supplémentaire par rapport à l'utilisation du butyrate de calcium seul dans cette étude.

SOURCES BIBLIOGRAPHIQUES

- Abd El-Wahab A., Mahmoud R.E., Ahmed M.F.E., Salama M.F., 2019. Effect of dietary supplementation of calcium butyrate on growth performance, carcass traits, intestinal health and pro-inflammatory cytokines in Japanese quails. J. Anim. Physiol. Anim. Nutr. (Berl), 103(6), 1768-1775.
- Marín L., Miguélez E.M., Villar C.J., Lombó F., 2015. Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. BioMed. Res. Int., 2015, 905215.

