

Détection de problèmes techniques à partir de données individuelles d'abreuvement de truies gestantes

Ellynn Nizzi, Anne Boudon, Charlotte Gaillard, UMR PEGASE, INRAE, Agrocampus Ouest, 35590, Saint-Gilles, France

L'eau est un besoin essentiel

- → La quantité d'eau bue peut varier selon le statut sanitaire, les conditions d'élevage, etc.
- → L'eau bue pourrait permettre de détecter des problèmes techniques
- → Des outils d'élevage de précision peuvent aider les éleveurs à réaliser un suivi individuel de leurs animaux et être alertés en cas de problème

Les enregistrements de consommation d'eau peuvent-ils permettre une détection précoce d'événements techniques en élevage?

Abreuvoir connecté UE3P Saint-Gilles (x2/bande)

1- Protocole expérimental

Etude réalisée sur 80 truies au départ :

- 4 expérimentations menées
- 2x2 bandes de 20 truies
- Analyse du début de gestation (3 jours après IA) jusqu'à fin de gestation (5 jours avant mise-bas)
- 2 stress induits pendant durée déterminée (4j/stress)
 - Fermeture d'un distributeur de concentrés (DAC) sur 2 > compétition alimentaire
- Elévation et diminution de la température : stress thermique (chaud/froid)
- → <u>Variables étudiées</u> : Volume d'eau bue (L/j), Fréquence (nombre de visite à l'abreuvoir/j) et durée (min/j)
 - → 53 truies analysées (enregistrement complet)

2- Analyse des données par une méthode de lissage différentiel

Méthode « fda »: Functional Data Analysis (Ramsay et al., 2020)

Le package « fda » sur R utilise des fonctions B-splines qui permettent d'affecter des degrés de lissage pouvant être ajustés en appliquant des pénalités sur les dérivés des fonctions.

Dans l'étude :

- pénalité forte de 100 = courbe lissée dite « théorique » (sans perturbations)
- pénalité faible de 10 = courbe « perturbée » se rapprochant des variations d'abreuvement

Figure 1: chaque croisement entre les deux courbes correspond à une « perturbation potentielle » (PP). Dans cet exemple, environ 15 PP détectées dont 2 plus importantes correspondant au stress thermique chaud

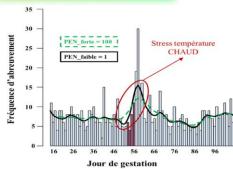


Figure 1 : Exemple de détection d'une perturbation sur le profil de fréquence d'abreuvement d'une truie, révélatrice d'un stress thermique

3 - Mise en relation des perturbations détectées avec les stress induits

Stress induit au sein de la perturbation

	Code binaire	1 = OUI	0 = NON
Perturbation Potentielle	1 = OUI	Vrai Positif (VP)	Faux Positif (FP)
Exceptionnelle	0 = NON	Faux Négatif (FN)	Vrai Négatif (VN)

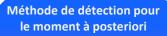
Figure 2 : identifications des Vrais/Faux Positifs/Négatifs (VP,FP,VN,FN)

- 1- Caractérisation des PP par l'aire comprise entre les deux courbes.
- 2- Identification des « perturbations potentielles exceptionnelles » (PPE) en affectant quantile à 0,95
- 3- Sélection des 5% des PPE ayant les aires sous la courbe les plus élevées
- 4- Codage des PPE et non PPE contenant ou non des stress induits (Vrais/Faux Positifs et Vrais/Faux Négatifs)
- 5- Calculs de Sensibilité/Spécificité à partir du code binaire (Figure 2)
- → Sensibilité = VP/(VP+FN) Spécificité = VN/(VN+FP)

4 - Résultats et discussion

Tableau 1 : Analyse descriptive des trois variables concernant les 53 truies gestantes et différence Multi/Primi (P <0,001 = ***)

Variables	Total truies N=53	Multipares N=44	Primipares N=9	Différence Multi/Primi
Volume (L/j/truie)	8,8	8,9	6,6	***
Fréquence (nb visite/j/truie)	14,5	15,6	11,3	***
Durée (min/j/truie)	9,5	9,1	8,7	NS


- 8,8 L d'eau bue/jour répartie en plus de 14 visites/j et d'une durée journalière d'abreuvement de 9,5 min
- Les primipares consomment moins d'eau, moins longtemps et moins de fois/j que les multipares
- Les résultats sont cohérents avec la littérature
- Fréquence = variable retenue car variabilité inter jours forte et inter individus faible → intérêt pour la détection de perturbation

- Les perturbations comprenant un stress ont une aire comprise entre les deux courbes plus élevée (P<0,01)
- Le codage des PPE suivi des calculs de Sensibilité/Spécificité ont mis en évidence :

Sensibilité = 9,4% Spécificité = 95,6%

Résultats insuffisant en sensibilité (détection de moins des 10% des Vrais Positifs (PGE contenant un stress) MAIS spécificité très bonne, moins de 5% de fausses alertes générées.

La méthode fda utilisée à mis en évidence des résultats prometteurs (travail par perturbation/ résultat intéressants avec l'étude de l'aire entre les deux courbes

> → Combinaisons avec variables d'autres capteurs pour une détection plus précise et en temps réel?