# Effets des fibres et du type de sol sur les émissions de gaz à effet de serre et d'ammoniac associées à l'élevage de truies

François-Xavier PHILIPPE (1), Martine LAITAT (1), José WAVREILLE (2), Nicole BARTIAUX-THILL (2), Baudouin NICKS (1),

Jean-François CABARAUX (1)

(1) Université de Liège-Faculté de Médecine vétérinaire, Bd de Colonster, 20, 4000 Liège, Belgique (2) Centre wallon de Recherches agronomiques, Rue de Liroux, 8, 5030 Gembloux, Belgique

fxphilippe@ulg.ac.be

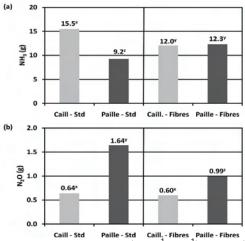
# Effects of dietary fibre and floor type on greenhouse gas and ammonia emissions associated with gestating sows

A study was carried out to investigate the effect of dietary fibre content (23% of non-starch polysaccharides (NSP) with a standard diet based on cereals vs. 44% of NSP with a fibrous diet based on sugar beet pulp) and the floor type (slatted floor vs. straw-based deep litter) on emissions of ammonia (NH<sub>3</sub>), nitrous oxide (N<sub>2</sub>O), methane (CH<sub>4</sub>) and CO<sub>2</sub>-equivalents (Eq-CO<sub>2</sub>). Six successive batches of 10 gestating sows were divided into 2 groups kept in 2 experimental rooms differing by the floor type. The standard diet was administered to the sows of the first 3 batches, the fibrous diet to the sows of the next 3 batches. Emissions were measured by infra-red photoacoustic detection. With the slatted floor, the fibrous diet decreased NH<sub>3</sub> emission (12.0 vs. 15.5 g sow<sup>-1</sup>.d<sup>-1</sup>) but increased the Eq-CO<sub>2</sub> emissions (0.69 vs. 0.57 kg sow<sup>-1</sup>.d<sup>-1</sup>) in relation to an increase of CH<sub>4</sub> emissions (18.4 vs. 12.8 g sow<sup>-1</sup>.d<sup>-1</sup>), the N<sub>2</sub>O emissions not being impacted by the diet, with value around 0.62 g sow<sup>-1</sup>.d<sup>-1</sup>. With the straw-bedded floor, the fibrous diet increased the emissions of NH<sub>3</sub> (12.3 vs. 9.2 g sow<sup>-1</sup>.d<sup>-1</sup>) and CH<sub>4</sub> (14.6 vs. 9.6 g sow<sup>-1</sup>.d<sup>-1</sup>) but decreased N<sub>2</sub>O emissions (0.99 vs. 1.64 g/ sow<sup>-1</sup>.d<sup>-1</sup>) with the consequence that Eq-CO<sub>2</sub> emissions were similar for the two diets, around 0.74 kg sow<sup>-1</sup>.d<sup>-1</sup>.

# **INTRODUCTION**

Les fibres dans l'alimentation des truies gestantes permettent de réduire la frustration alimentaire due au rationnement durant la gestation et de favoriser l'ingestion alimentaire durant la lactation. D'un point de vue environnemental, les fibres sont connues pour réduire la production d'ammoniac (NH<sub>3</sub>) à partir des lisiers et pour augmenter la production de méthane (CH<sub>4</sub>) (Philippe et al., 2008). Ces effets, démontrés en conditions de laboratoire, ont été peu testés en conditions de terrain. De plus, l'impact des fibres sur les émissions de protoxyde d'azote (N₂O) a été très peu étudié. Le type de sol influence également les émissions gazeuses. Ainsi, l'élevage sur litière est souvent associé à une réduction des émissions de NH<sub>3</sub> et de CH<sub>4</sub> et une augmentation des émissions de N<sub>2</sub>O (Philippe et al., 2011). Néanmoins, les effets combinés d'une alimentation fibreuse et d'un sol paillé n'ont fait l'objet que de peu de recherche. Dès lors, l'objectif de cette étude est de mesurer les émissions de NH<sub>3</sub>, N<sub>2</sub>O et CH<sub>4</sub> lors de l'élevage de truies gestantes sur caillebotis ou litière de paille accumulée et recevant un aliment standard ou un aliment enrichi en fibres.

#### 1. MATERIEL ET METHODES


Six lots successifs de 10 truies gestantes réparties en 2 groupes homogènes de 5 animaux ont été logés dans 2 locaux séparés. Chaque local est composé d'une zone d'alimentation en sol bétonné (1,2 m²/truie) et d'une zone de repos (1,8 m²/truie) dont le sol est constitué d'un caillebotis en béton dans un local et d'une litière paillée dans l'autre. Les truies des 3 premiers lots ont reçu un aliment standard contenant 25% d'orge et

23% de blé. Les truies des 3 lots suivants ont reçu un aliment fibreux contenant 37% de pulpes de betterave et 18% d'orge. En modulant les teneurs en tourteaux (colza, palmiste, tournesol et soja) et en graisse animale, les 2 aliments sont rendus iso-protéiques (13%) et iso-énergétiques sur base de l'énergie nette (2100 kcal/kg). La teneur en glucides nonamylacés est de 24,5% pour l'aliment standard et de 44% pour l'aliment fibreux. Les truies sont rationnées et reçoivent un seul repas quotidien (environ 2,6 kg/truie). Les concentrations en gaz sont mesurées dans les locaux et le couloir d'apport d'air par détection photo-acoustique infrarouge durant 3 périodes de 6 jours consécutifs réparties sur la période de gestation. Les émissions sont calculées en multipliant la différence de concentration entre l'air ambiant et l'air entrant par le débit de ventilation. Sur base des données horaires, on dispose pour chaque gaz de 144 données (24 heures x 6 jours) par semaine de mesure. Les émissions d'équivalent-CO<sub>2</sub> (Eq-CO<sub>2</sub>) sont calculées d'après les recommandations de l'IPCC (IPCC, 2006). Le modèle statistique (SAS, proc MIXED) tient compte du type de sol (1 d.l.), de l'aliment (1 d.l.), de l'interaction sol-aliment (1 d.l.), de la période de mesure (2 d.l.) et du lot comme effet aléatoire.

### 2. RESULTATS ET DISCUSSION

Les données d'émissions sont présentées à la figure 1.

Concernant le NH<sub>3</sub>, la présence de fibres dans la ration des truies sur caillebotis réduit les émissions de près de 25%, confirmant ainsi des résultats obtenus en condition de laboratoire Jarret *et al.*, 2011). La fermentation des fibres dans l'intestin favorise l'incorporation d'azote dans les protéines



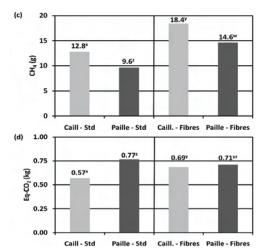



Figure 1 - Emissions gazeuses (truie 1 jour 1) lors de l'élevage sur caillebotis ou sur paille accumulée de truies gestantes recevant un aliment standard ou fibreux : (a) NH<sub>3</sub>-ammoniac ; (b) N<sub>2</sub>O-protoxyde d'azote ; (c) CH<sub>4</sub>-méthane ; (d) Eq-CO<sub>2</sub>- équivalents CO<sub>2</sub>.

w,x,y,z : pour chaque gaz, les valeurs agrémentées de lettres différentes diffèrent significativement entre elles (*P*<0,05)

microbiennes et réduit l'excrétion urinaire d'urée, précurseur de NH<sub>3</sub>. Par contre, lors de l'élevage sur paille, on constate une augmentation des émissions de NH3 de 33% avec l'aliment fibreux, comme déjà été observé par Philippe et al. (2009). Si on étudie l'effet du type de sol, on constate que les émissions de NH<sub>3</sub> en alimentation standard sont réduites de 40% pour la loge paillée en comparaison au système à caillebotis. A l'inverse, avec l'aliment enrichi en fibres, on n'observe pas de réduction des émissions en loge paillée. L'apport par la paille de matière organique dégradable et l'environnement particulier au sein des litières favorisent l'incorporation d'azote dans les protéines bactériennes et les réactions de nitrification et de dénitrification, ce qui réduit les émissions de NH<sub>3</sub>. De plus, une partie de la paille peut être mâchonnée et ingérée par les animaux, ce qui favorise les fermentations microbiennes dans l'intestin et la synthèse de protéines bactériennes stables. Avec une ration fibreuse, une réduction de la motivation des truies à mâchonner le substrat a été rapportée, signe de satisfaction alimentaire (Philippe et al., 2008). Cela se traduit par un aspect plus aéré de la litière avec davantage de longs brins de paille. Le type d'effluent influence donc l'effet des fibres alimentaires sur les émissions de NH<sub>3</sub>.

Les émissions de N<sub>2</sub>O à partir des lisiers ont été proches de 0,6 g truie<sup>-1</sup> jour<sup>-1</sup>, quelle que soit la teneur en fibres, l'environnement anaérobie au sein des lisiers n'étant pas favorable à sa synthèse. Par contre, au sein des litières, la combinaison intrinsèque de zones aérobies et anaérobies favorise la production de N<sub>2</sub>O. Avec l'aliment fibreux, on observe une réduction des émissions pour les truies logées sur paille, qui pourrait s'expliquer par l'aspect plus aéré de la litière.

Les émissions de CH<sub>4</sub> sont 45 à 50% plus élevées avec l'aliment fibreux, que les truies soient logées sur caillebotis ou sur paille. La production de CH<sub>4</sub> lors des fermentations dans l'intestin et l'effluent sont en effet favorisée avec les rations fibreuses (Jarret et al., 2011). Les émissions associées au logement sur paille sont 20 à 25% moins élevées qu'avec le caillebotis quelle que soit la teneur en fibres. Les apports de paille favorisent l'aération de l'effluent, et partant limitent la synthèse de CH<sub>4</sub>, qui nécessite des conditions strictement anaérobies.

Les émissions cumulées de gaz à effet de serre, exprimées en Eq-CO<sub>2</sub>, sont augmentées de 21% avec l'aliment fibreux pour les truies sur caillebotis, en particulier en raison de la contribution plus importante des émissions entériques de CH<sub>4</sub>. Sur paille accumulée, les émissions plus élevées s'expliquent par l'augmentation de la production de N<sub>2</sub>O, mais l'association d'un aliment fibreux et d'un sol paillé n'augmente pas davantage les émissions d'Eq-CO<sub>2</sub> car la production plus élevées de CH<sub>4</sub> est compensée par la réduction des émissions de N<sub>2</sub>O. De la même manière, on ne constate pas d'effet significatif du type de sol pour les truies nourries avec l'aliment fibreux. Dans ce cas, les émissions de N<sub>2</sub>O plus élevées sur paille sont compensées par des émissions de CH<sub>4</sub> plus faibles.

En conclusion, une alimentation fibreuse apportée à des truies logées sur caillebotis réduit les émissions de  $\mathrm{NH}_3$  mais augmente les émissions de gaz à effet de serre, en raison de la production accrue de  $\mathrm{CH}_4$ . Sur paille accumulée, les fibres augmentent les émissions de  $\mathrm{NH}_3$  mais sont sans effet sur les émissions cumulées de gaz à effet de serre, les contributions du  $\mathrm{N}_2\mathrm{O}$  et du  $\mathrm{CH}_4$  étant cependant modifiées.

## **REFERENCES BIBLIOGRAPHIQUES**

- IPCC, 2006. Agriculture, forestry and other land use. In: Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K. (Eds.), 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Institute for Global Environmental Strategies, Hayama, Japan.
- Jarret G., Martinez J., Dourmad J.-Y., 2011. Effect of biofuel co-products in pig diets on the excretory patterns of N and C and on the subsequent ammonia and methane emissions from pig effluent. Animal, 5, 622-631.
- Philippe F.X., Remience V., Dourmad J.Y., Cabaraux J.F., Vandenheede M., Nicks B., 2008. Food fibres in gestating sows: effects on nutrition, behaviour, performances and waste in the environment. INRA Prod. Anim., 21, 277-290.
- Philippe F.X., Canart B., Laitat M., Wavreille J., Vandenheede M., Bartiaux-Thill N., Nicks B., Cabaraux J.F., 2009. Gaseous emissions from group-housed gestating sows kept on deep litter and offered an ad libitum high-fibre diet. . Agric., Ecosyst. & Environ., 132, 66-73.
- Philippe F.X., Laitat M., Wavreille J., Bartiaux-Thill N., Nicks B., Cabaraux J.F., 2011. Ammonia and greenhouse gas emission from group-housed gestating sows depends on floor type. . Agric., Ecosyst. & Environ., 140, 498-505.